by Kenitiro Suguio1,2, Alethéa Ernandes Martins Sallun2, and Emílio A. A. Soares2,3

Quaternary: “Quo Vadis”? 

The Quaternary, like the long-abandoned terms Primary, Secondary and Tertiary, is a very ambiguous word, whose chronological meaning is not very well defined. Its usage spread very quickly, perhaps due to its more-or-less close relationship with the human history and with the latest glaciations. However, the oldest of human fossil record, according to recent discoveries in Africa (Djouarab Desert in Tchad), is about 7 million years old, rather than 2 million years as suggested by fossils at Olduvai. Moreover, for some time now, it has been known that the first Quaternary-type glaciations occurred in several regions of the Earth between 2.5 and 3 million years ago, that is prior to the Pliocene-Pleistocene limit at 1.81 million years ago, as determined by the GSSP. These facts have led some researchers, mostly from the International Union of Geological Sciences (IUGS), and from the International Association for Quaternary Research (INQUA), to suggest changes in the subdivision of the Neogene. Certainly, discussions on this subject will be raised at many scientific meetings in the near future until almost unanimous agreement can be attained. Some additional suggestions are presented here, as a contribution to resolution of these nomenclatorial issues.

Introduction

According to Phillips (1840), the present Cenozoic Era was subdivided in schemes still subjected to much discussion, until at least the middle of the 19th century, based on field relationships and/or on biological evolution. In 1760 Arduino, professor of the Padova University (Italy), used the word Primary for the oldest rocks followed by rocks of Secondary, during lithostratigraphical classification surveys of northern Italy mountainous region. The lower hills composed of gravelly, sandy and clayey sediments were attributed to the Tertiary. On the other hand, the term Quaternary, Desnoyers (1829) was proposed for alluvial and marine sediments containing the remains of associations of extant animals and plants, and overlying Tertiary deposits of the Paris Basin.

The use of the word Quaternary, even without more precise chronological definition, spread very rapidly particularly in the mapping of less consolidated superficial deposits. Ages attributed to Quaternary units on older geologic maps are very uncertain. Based on relative similarity of fossil assemblages with the modern fauna, Lyell (1833) subdivided the Tertiary Period into the Eocene, Miocene and Pliocene Epochs. Apparently ignoring the previous proposal from Desnoyers (1829), Lyell named the post-Tertiary time as Recent (Fairbridge, 1968). The Recent Epoch was later renamed Holocene Epoch by Gervais (1867). Lyell never used the word Quaternary, but assumed that Desnoyer’s concept was approximately equivalent to the time interval from the Tertiary Period to the Recent.

The Neogene and Paleogene Stages were introduced by Hörnes (1853) to subdivide Cenozoic deposits and were adopted by the International Commission on Stratigraphy (ICS). The Paleogene of Hörnes included the Paleocene, Eocene and Oligocene Epochs and the Neogene, the Miocene, Pliocene, and Pleistocene Epochs.

When the International Commission on Stratigraphy (ICS) and the International Association for Quaternary Studies (INQUA) decided to standardize the Pliocene-Pleistocene limit during the 1950s, there were three proposals for formal definition:

a) Lyell’s (1833) Newer Pliocene at approximately 1 My; 
b) Top of Olduvai palaeomagnetic subzone at about 2 My, and c) Near the Gauss-Matuyama palaeomagnetic polarity reversal at about 2.5 My.

Option (b) was chosen during the INQUA International Congress in 1982 (Moscow) by the INQUA Commission on Stratigraphy, acting as a subcommission of the International Commission on Stratigraphy (ICS); it was formally approved by this commission in 1983. According to this decision, the base of the Pleistocene (boundary stratotype), composed of deepwater marine deposits, would be located in Vrica, Sicily (Italy), near the top of Olduvai normal polarity palaeomagnetic subzone at about 1.8 My. It characterizes the time of greatest spreading of the mollusk Arctica islandica which was, in general, thought to be restricted to boreal waters of the interglacial stage. According to Aguirre & Pasini (1985), this boundary stratotype does not take into account the situation of the Quaternary in the chronostratigraphic scale. The stratotype was proposed by Pasini & Colalongo (1997) and, moreover, was characterized in detail by stratigraphers from many countries from sedimentological, palaeoecological, biostratigraphical, biochronological and magnetostratigraphical viewpoints.

The word Quaternary, even without a formal definition, became very entrenched and amongst other peculiarities, traditionally has been correlated with glacial episodes of the Northern Hemisphere (Figure 1).

However, chronological evidence, based on marine isotopic records and on ice-drifted sediments of the Northern Atlantic Ocean, indicates that the most important increase in the volume of continental glaciers must have begun about 2.6 Ma. Because of this, this subject was reevaluated in 1998 by the Neogene Stratigraphy Commission of ICS and by the Quaternary Stratigraphic Commission of ICS-INQUA, which again resulted in the formal rejection of placement of the Pliocene-Pleistocene limit at the base of the Gelasian Stage. Its boundary-stratotype was maintained at base Pleistocene in Vrica, Sicily (Italy), dated at 1.806 Ma. Thus, if the Quaternary is defined on the basis of the most important oscillations in Northern Hemi-
sphere glacier volume, it began 800 thousand years before the Pleistocene Epoch base (Figure 2).

Some proposals for formalizing the Quaternary

Subdivision proposed by the International Commission on Stratigraphy (ICS)

The Cenozoic Era, with a total duration of about 65 My, would be subdivided into Paleogene (42 My) and Neogene (23 My) Periods, consisting of comparable time intervals (Figure 3). The Tertiary (about 63 My or more than 95% of the Cenozoic) and the Quaternary (about 2 My or less than 5% of the Cenozoic) Periods would be formally abandoned, but maintained informally, like the equally important unit term Precambrian.

The decision to abandon the word Tertiary follows in the same tradition that led to the suppression of Primary and Secondary: they are very ambiguous words. In the subdivision presented by Gradstein et al. (2004), Quaternary was also omitted, but Pleistocene and Holocene were maintained with the Pliocene-Pleistocene boundary being set at 1.8 My and the Pleistocene-Holocene limit at 0.0115 My.

Subdivision of the International Association for Quaternary Research (INQUA)

Recently, Pillans (2004) emphasized the need for maintaining the Quaternary, as an international subdivision of the Neogene Period (Figure 4). According to this author, the Quaternary represents a word too important to be simply omitted from the Geologic Time Scale, as happened with the Primary, Secondary and, more recently, Tertiary. As one his justifications, the author states that the Quaternary represents a link between humankind and geology. Moreover, it would provide the needed umbrella-type protection for other disciplines correlatable with geosciences, as for example, archaeology, palaeoecology, palaeoclimatology, etc. Pillans proposed redefinition of the Quaternary as a Subperiod (or Subsystem) of the Neogene Period (or System), beginning at about 2.6 My and including at its base the Gelasian stage (Rio et al., 1998). The most important arguments in favor of this proposal are:

a) There is very strong support by INQUA members, who answered positively to the proposal for maintenance of the Quaternary as a formal stratigraphic unit.

b) Precedence already exists for introducing the Subperiod (or Subsystem) in the Geologic Time Scale as, for example, the Mississippian and Pennsylvanian Subperiods (or Subsystems) of the Carboniferous Period.

c) Disassociation of the base of the Quaternary from the Pliocene-Pleistocene boundary (1.8 My) would finish discussions about the position of this limit.

d) The majority of INQUA members seems to be favorable to the “longer” Quaternary (2.6 My), instead of the “shorter” Quaternary (1.8 My). This choice reflects the

Figure 1 Tentative correlation between the Quaternary Period and Northern Hemisphere glacial and interglacial (Ig) episodes (Geosciences Research Group of Japan, 1996).

Figure 2 Current span of the Quaternary without formal definition based on the most important oscillations in Northern Hemisphere glacier volumes (Ogg, 2004).
understanding of significance of continuity of the properties through time. For example, loess deposition in China became more intense and more extensive about 2.6 My ago, with quite different properties from the underlying “red clays” (Ding et al. 1997).

e) At about 2.6 My, deep sea oxygen isotope records show a series of cycles of growing glacial intensities, which are also associated with first record of more abundant North Atlantic Ocean glacial detrital sediments. For many researchers this would represent the advent of Quaternary glacial ages. This boundary corresponds to the transition from equinox precession to ecliptical obliquity as the dominant process in climatic forcings (Milankovitch, 1920).

According to the INQUA Stratigraphy and Chronology Commission, consultations about this subject must continue, during the International Union of Geological Sciences (IUGS) congresses, like that recently finished in Florence (Italy), as well as during the next INQUA International Congress in Cairns (Australia), to be held in 2007.

Present proposal

It is suggested here that, for the same reasons alleged for the abandonment of the terms Primary, Secondary and Tertiary, the word Quaternary could be eliminated from the Geological Time Scale as well, because of its extreme ambiguity. The word Holocene, which is commonly considered as synonymous of Recent or Post-glacial, could be also omitted (Figure 5).

In support of our suggestion, the following questions could be raised:

a) Why Post-glacial, if until now there is no irrefutable evidence that Pleistocene glaciations have really finished?

b) Why couldn’t the well-known mild climate of the Holocene (or Post-glacial) simply represent an interglacial stade, as many palaeoclimatologists think?

c) If the previous hypothesis is believable, isn’t an imminent new glacial stade quite possible within the near future, in a few hundred or few thousand years?

In this case, the Pleistocene Epoch could be extended till the present. The Holocene, as a possible Pleistocene interglacial stade, does not deserve any formal title as an Epoch of Neogene Period (Suguio & Soares, 2004). On the other hand, the above mentioned uncertainties do not annul the possibility to consider the Quaternary as an informal chronostratigraphic unit, whose beginning could be located at the base of the Gelasian Stage, coincident with the commencement of the Pleistocene Epoch at about 2.6 My, thereby reducing the duration of Pliocene Epoch by 800 thousand years. This informal use of Quaternary would be somewhat analogous to that of Precambrian, at the other end of the time scale, maintained as such by the strength of tradition. However, we are aware that it remains to be seen if re-opening (for the third time in the last two decades) of...
Finally considerations

The use of anthropological criteria in characterizing the last chapter (Pleistocene Epoch or “Quaternary”) of historical geology makes the Geological Time Scale too anthropocentric, and apparently inconsistent, since mankind may well have appeared in the Miocene Epoch. On the other hand, humankind became conscious of its own existence only about 10 thousand years ago (at the beginning of the “Holocene”). At that time, mankind began to abandon instinctive wandering behaviour, like wild animals, and adopted more sedentary life. This change in lifestyle became possible with “domestication” of animals and plants for food.

The abandonment of Holocene and maintenance of “Quaternary”, as an informal chronostratigraphic unit are proposed in this paper. The Quaternary would become synonymous with the Pleistocene Epoch, which began about 2.6 My. This proposal would safeguard the continuity of such important and traditional research organizations as INQUA and similar national associations, like the Brazilian Association of Quaternary Studies (ABEQUA), as well as of their on going multi and interdisciplinary studies. Finally, the authors believe that this proposal is the best one, because it is in perfect agreement with the Geological Timetable based on the Earth history and evolution.

The authors are grateful to Dr. Thomas Rich Fairchild for careful revision of the English text.

References


Ardaino, G., 1760, A letter to Sig. Cav. Antonio Valisneri: Nuova raccolta di opuscoli scientifici e filologici del padre Angiolo Colognerà (Venice), v. 6, pp. 142 – 143.


Lyell, C., 1833, Principles of Geology: being inquiry how far the former changes of the earth’s surface are referable to causes now in operation: London, John Murray, v. 3, pp. 398.


Kenitiro Suguió is professor emeritus of geology at the University of São Paulo, Brazil, where he remains as a lecturer and advisor in the graduate course on Sedimentary Geology. During the last 25 years he has been active participant of IGCP and IGBP projects on Quaternary Geology. He received the Brazilian National Book Prize in 1993 and the commendation of the National Order of Scientific Merit in 1998. He is also full professor at CEPPE (Centro de Pós-graduação, Pesquisa e Extensão), of Guarulhos University (State of São Paulo).

Alethéa Ernandes Martins Sallun is a graduate student in the Sedimentary Geology program of the Geosciences Institute, University of São Paulo. Her PhD research is on the Cenozoic alluvial-depositional and climatic events of southeastern Brazil, supported financially by FAPESP.

Emílio Alberto Amaral Soares is professor of sedimentology in the Geosciences Institute, Federal University of Amazonas, Brazil, and currently in the doctorate program at the Geoscience Institute, University of São Paulo. His dissertation subject is the evolution of Cenozoic depositional of the Amazon Basin, particularly as related to the latest depositional and climatic events of the Quaternary and their relation with Andean tectonics.

September 2005